
University of Nizhni Novgorod
Faculty of Computational Mathematics & Cybernetics

Section 10.

Parallel Methods for Sorting

Introduction to Parallel Introduction to Parallel
ProgrammingProgramming

Gergel V.P., Professor, D.Sc.,
Software Department

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 2 51

Contents

Problem Statement
Parallelizing Techniques
Bubble Sort
Shell Sort
Parallel Quick Sort
HyperQuick Sort
Sorting by Regular Sampling
Summary

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 3 51

Problem Statement

Sorting is one of the typical problems of data processing and
is usually considered as a problem of locating the elements of
unregulated set of values

},...,,{ 21 naaaS =

in the order of monotonous increase or decrease

}...:),...,,{('~ ''
2

'
1

''
2

'
1 nn aaaaaaSS ≤≤≤=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 4 51

Parallelizing Techniques…

The basic operation – " compare-exchange "
// the basic sorting operation
if (A[i] > A[j]) {
temp = A[i];
A[i] = A[j];
A[j] = temp;

}

− The sequential use of the operation makes possible
to sort the data,

− The difference between the sorting algorithms
reveals itself in the method of choosing pairs of
values for comparison

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 5 51

Parallelizing Techniques…

Parallel generalizing of the basic operation
when p = n (each processor contains a data element):

− To exchange the values available on the processors
and (saving the original elements on the processors),

− To compare the identical pairs of values (,) on each
processor and ; according to the results of the
comparison to distribute the data between the processors:
to locate the smaller element on one of the processors (for
instance,), and to store the greater value of the pair on
the other processor (i.e.)

ia

),min('
jii aaa =),max('

jij aaa =

iP
jP

iP jP
ja

iP
jP

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 6 51

Parallelizing Techniques…

Parallel generalization of the basic operation when p < n
(each processor contains a data block of size):
− To sort the block on each processor at the beginning of sorting,
− To exchange the blocks between the processors and ,
− To unite the blocks and on each processor into

a sorted block with the help of merge operation,
− To split the obtained double block into equal parts and to locate

one of the parts (for instance, the one with smaller data values)
on processor , and the other part (with the greater data
values) – on processor

This procedure is usually referred to as the “compare-split” operation

pn /

'''
1

''''
1

'
1 ,:][jiijiiiiсортii aaAaAaAAAA ≤⇒∈∀∈∀∪=∪ +++

iP 1+iP

iA 1+iA

iP
1+iP

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 7 51

Parallelizing Techniques

The result of parallel algorithm execution has to be
as follows:
− The data available on the processors is sorted,

− The order of data distribution among the processors
corresponds to the linear enumeration order (i.e. the value
of the last element on the processor is less or equal to the
value of the first element on the processor for any

)10 −<≤ pi

iP
1+iP

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 8 51

Bubble Sort: Sequential Algorithm

// Sequential algorithm of bubble sorting
BubbleSort(double A[], int n) {

for (i=0; i<n-1; i++)
for (j=0; j<n-i; j++)
compare_exchange(A[j], A[j+1]);

}

The complexity of the computations is O(n2),
The algorithm is hard to parallelize in its direct form

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 9 51

Bubble sorting: Algorithm of odd-even permutation…

// Sequential algorithm of odd-even permutation
OddEvenSort(double A[], int n) {

for (i=1; i<n; i++) {
if (i%2==1) // odd iteration

for (j=0; j<n/2-1; j++)
compare_exchange(A[2j+1],A[2j+2]);

if (i%2==0) // even iteration
for (j=1; j<n/2-1; j++)

compare_exchange(A[2j],A[2j+1]);
}

}

Different rules for carrying out odd and even iterations

Suitability of parallelizing

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 10 51

Bubble sorting: Algorithm of odd-even permutation…

// Parallel algorithm of odd-even permutation
ParallelOddEvenSort (double A[], int n) {

int id = GetProcId(); // process number
int np = GetProcNum(); // number of processes
for (int i=0; i<np; i++) {

if (i%2 == 1) { // odd iteration
if (id%2 == 1) // odd process number

compare_split_min(id+1); // compare-exchange to the right
else compare_split_max(id-1); // compare-exchange to the left

}
if (i%2 == 0) { // even iteration

if(id%2 == 0) // even process number
compare_split_min(id+1); // compare-exchange to the right

else compare_split_max(id-1); // compare-exchange to the left
}
}

}

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 11 51

Bubble sorting: Algorithm of odd-even permutation…

Efficiency analysis…
– The general estimation of efficiency and speedup

characteristics:

() ()()npnpnp
nnE

npnpn
nnS pp 2)/(log

log,
2)/(log

log

2

2

2

2

+⋅⋅
=

+⋅
=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 12 51

Bubble sorting: Algorithm of odd-even permutation…

Efficiency analysis (detailed estimates):
- Time of parallel algorithm execution, that corresponds to the

processor calculations:

- The duration of data accumulation in case of the Hockney
model is determined by means of the following equation:

τ)2)/(log)/(()(2 npnpncalcTp +=

() ()()βα /pnwpcommTp ⋅+⋅=

The total execution time for the parallel algorithm:

()()βατ /)2)/(log)/((2 pnwpnpnpnTp ⋅+⋅++=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 13 51

Bubble sorting: Algorithm of odd-even permutation…

Results of computational experiments…
– Comparison of theoretical estimations and experimental

data2T *
2T2T *
2T4T
*

4T

Parallel algorithmData
size 2 processors 4 processors

10,000 0.002003 0.002210 0.002057 0.003270

20,000 0.003709 0.004428 0.003366 0.004596

30,000 0.005455 0.006745 0.004694 0.006873

40,000 0.007227 0.008033 0.006035 0.009107

50,000 0.009018 0.009770 0.007386 0.010840

0,000000

0,002000

0,004000

0,006000

0,008000

0,010000

0,012000

10000 20000 30000 40000 50000

Number of elements

Ti
m

e Experiment

Model

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 14 51

Bubble sorting: Algorithm of odd-even permutation…

Results of computational experiments:
– Speedup

Parallel algorithm

2 processors 4 processors

Time Speedup Time Speedup

10,000 0.001422 0.002210 0.643439 0.003270 0.434862

20,000 0.002991 0.004428 0.675474 0.004596 0.650783

30,000 0.004612 0.006745 0.683766 0.006873 0.671032

40,000 0.006297 0.008033 0.783891 0.009107 0.691446

50,000 0.008014 0.009770 0.820266 0.010840 0.739299

Number of
elements Sequential algorithm

0,000000
0,100000

0,200000
0,300000
0,400000

0,500000
0,600000
0,700000

0,800000
0,900000

2 4

Number of processes

Sp
ee

du
p

10000 elements
20000 elements
30000 elements
40000 elements
50000 elements

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 15 51

Bubble sorting: algorithm of odd-even permutation

The parallel variant of the algorithm operates more
slowly than the original sequential bubble sorting
method:

– The amount of the data transmitted among the processors
is quite big and can be compared to the number of the
executed computational operations,

– This misbalance of the amount of computations and the
complexity of the data communication operations rises
as the number of processors increases

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 16 51

Shell sort: Sequential algorithm…

The general concept of the Shell sort is the comparison of the
pairs of values located rather far from each other in the set of
values to be ordered at the initial stages of sorting (sorting such
pairs requires, as a rule, a big number of permutation operations,
if only neighboring elements are compared):
– At the first step of the algorithm the elements n/2 pairs

(ai, an/2+i) for 1 ≤ i ≤ n/2 are sorted,
– At the second step the elements in n/4 groups of four elements

(ai, an/4+1, an/2+1, a3n/4+1) for 1 ≤ i ≤ n/4 are sorted etc.,
– At the last step the elements of all the array (a1, a2,…, an) are

sorted.
The total number of the Shell algorithm iterations is equal to log2n

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 17 51

Shell sort: Sequential algorithm

// Sequential algorithm of Shell sort
ShellSort (double A[], int n){

int incr = n/2;
while(incr > 0) {

for (int i=incr+1; i<n; i++) {
j = i-incr;
while (j > 0)

if (A[j] > A[j+incr]){
swap(A[j], A[j+incr]);
j = j - incr;

}
else j = 0;

}
incr = incr/2;

}
}

The complexity of the computations is O(nlog2 n)

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 18 51

Shell sort: Parallel algorithm…

Let the communication network topology be an N-dimensional
hypercube (i.e. the number of processors is equal to p=2N).

The algorithm operates as follows:

− The first stage (N iterations): the operation “compare-split” is
executed for each pair of processors in the hypercube. The pairs
of processors are formed according to the rule: at each iteration
i, 0 ≤ i < N, the processors whose numbers differ in their bit
presentation only in position N-I form a pair,
− The second stage: the execution of parallel algorithm iterations
of odd-even permutation. The iterations are carried out until the
actual change of the sorted set is terminated. Their total number L
may vary from 2 to p.

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 19 51

Shell sort: Parallel algorithm…

00

10 11

01

00

10 11

01

00

10 11

01

9511 50 53 8636 44 67

445 15 23811 16 35

 Iteration 1

351 11 16 365 15 23

8644 44 679550 53 81

Iteration 2

151 5 11 3616 23 35

9567 81 865344 44 50

On completion of iteration 2

Example:

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 20 51

Shell sort: Parallel algorithm…

Efficiency analysis…

– The general estimation of speedup and efficiency:

() ()()npnpnp
nnE

npnpn
nnS pp 2)/(log

log,
2)/(log

log

2

2

2

2

+⋅⋅
=

+⋅
=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 21 51

Shell sort: Parallel algorithm…

Efficiency analysis (detailed estimates):

() ()() ,2log)/(log)/()(22 τpnLppnpncalcTp ⋅++=

- Time of parallel algorithm execution, that corresponds to the
processor calculations:

- The duration of data accumulation in case of the Hockney
model is determined by the following equation:

()()βα /)(log)(2 pnwLpcommTp ⋅+⋅+=

The total execution time of the parallel algorithm:

()()]/)/2)[((log)/(log)/(22 βαττ pnwpnLppnpnTp ⋅++++=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 22 51

Shell sort: Parallel algorithm…

Results of computational experiments…
– Comparison of theoretical estimations and experimental

data2T *
2T4T
*

4T2T *
2T4T
*

4T

Parallel algorithmNumber
of

elements 2 processors 4 processors

10,000 0.002684 0.002959 0.002938 0.007509

20,000 0.004872 0.004557 0.004729 0.009826

30,000 0.007100 0.006118 0.006538 0.012431

40,000 0.009353 0.008461 0.008361 0.017009

50,000 0.011625 0.009920 0.010193 0.019419

0,000000

0,002000

0,004000

0,006000

0,008000

0,010000

0,012000

0,014000

10000 20000 30000 40000 50000

Number of elements

Ti
m

e Experiment

Model

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 23 51

Shell sort: Parallel algorithm

Results of computational experiments:
– Speedup

0,000000
0,100000

0,200000
0,300000
0,400000

0,500000
0,600000
0,700000

0,800000
0,900000

2 4

Number of Processors

Sp
ee

du
p

10000 elements
20000 elements
30000 elements
40000 elements
50000 elements

Parallel algorithm

2 processors 4 processors

Time Speedup Time Speedup

10,000 0.001422 0.002959 0.480568 0.007509 0.189373

20,000 0.002991 0.004557 0.656353 0.009826 0.304396

30,000 0.004612 0.006118 0.753841 0.012431 0.371008

40,000 0.006297 0.008461 0.744238 0.017009 0.370216

50,000 0.008014 0.009920 0.807863 0.019419 0.412689

Number of
elements Sequential algorithm

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 24 51

Quick sort: Sequential algorithm…
The quick sort algorithm proposed by Hoare C.A.R. is based on

sequential partitioning of the data set being sorted into blocks of smaller
sizes so that order relations are provided between the values of different
blocks (for any pair of blocks all the values of one of them do not exceed
the values of the other one):

– At the first iteration of the method the initial data set is split into first
two parts; a certain pivot element is selected to arrange this splitting, all
the set values, which are less than the pivot element, are transferred to
the first block being formed, all the other values create the second
block of the set,
– At the second iteration the above described rules are applied
recursively to both blocks, which have been formed, etc.

If the choice of the pivot elements is optimal, the initial data array
appears to be sorted after executing log2n iterations

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 25 51

Quick sort: Sequential algorithm
// Sequential algorithm of quick sort
QuickSort(double A[], int i1, int i2) {

if (i1 < i2){
double pivot = A[i1];
int is = i1;
for (int i = i1+1; i<i2; i++)

if (A[i] ≤ pivot) {
is = is + 1;
swap(A[is], A[i]);

}
swap(A[i1], A[is]);
QuickSort (A, i1, is);
QuickSort (A, is+1, i2);

}
}

nn 2log4.1The average number of operations is

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 26 51

Quick sort: Parallel algorithm…

Let the communication network topology be an N-dimensional
hypercube (i.e. the number of processors is equal to p=2N).

The algorithm operates as follows:

− To choose the pivot element and send it to all the processes (for
instance, the arithmetic mean of the elements located on the pivot
processor can be chosen as the pivot element),
− To split the block available on each processor into two parts using
the obtained pivot element,

to be continued

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 27 51

Quick sort: Parallel algorithm…

− To create the pairs of processors, for which the bit presentations
of their numbers differ only in position N, and exchange the data
between the processors; as a result of these data communication
operations, the parts of blocks with the values less than the pivot
element must appear on the processors, for which the number of bit
position N is equal to 0 in the bit presentation of the numbers; the
processors with the numbers, where bit N is equal to 1 must gather
correspondingly all the data values, which exceed the value of the
pivot element,
− To pass over to the subhypercube of smaller dimension and
repeat of the above described procedure.

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 28 51

Quick sort: Parallel algorithm…

Efficiency analysis…
– The general estimation of speedup and efficiency:

() ()

() ()()pnppnpnp
nnE

pnppnpn
nnS

p

p

2log)/(log
log

,
2log)/(log

log

22

2

22

2

⋅+⋅
=

⋅+
=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 29 51

Quick sort: Parallel algorithm…

Efficiency analysis (detailed estimates):
- Time of parallel algorithm execution, that corresponds to the

processor calculations:

- The duration of data accumulation in case of the Hockney
model is determined by the following equation:

,)]/(log)/(log)/[()(22 τpnpnppncalcTp +=

)/)2/((log)/()(log)(2
2

2 βαβα pnwpwpcommTp +++=

The total execution time of the parallel algorithm:
)/)2/((log)/()(log)]/(log)/(log)/[(2

2
222 βαβατ pnwpwppnpnppnTp +++++=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 30 51

Quick sort: Parallel algorithm…
Results of computational experiments…
– Comparison of theoretical estimations and experimental

data2T *
2T4T
*

4T

0,000000

0,001000

0,002000

0,003000

0,004000

0,005000

0,006000

10000 20000 30000 40000 50000

Number of elements

Ti
m

e Experiment

Model

2T *
2T4T
*

4T

Parallel algorithmData
size 2 processors 4 processors

10,000 0.001280 0.001521 0.001735 0.003434

20,000 0.002265 0.002234 0.002321 0.004094

30,000 0.003289 0.003080 0.002928 0.005088

40,000 0.004338 0.004363 0.003547 0.005906

50,000 0.005407 0.005486 0.004175 0.006635

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 31 51

Quick sort: Parallel algorithm
Results of computational experiments:
– Speedup

Parallel algorithm

2 processors 4 processors

Time Speedup Time Speedup

10,000 0.001422 0.001521 0.934911 0.003434 0.414094

20,000 0.002991 0.002234 1.338854 0.004094 0.730581

30,000 0.004612 0.003080 1.497403 0.005088 0.906447

40,000 0.006297 0.004363 1.443273 0.005906 1.066204

50,000 0.008014 0.005486 1.460809 0.006635 1.207837

Number of
elements Sequential algorithm

0,000000

0,200000

0,400000

0,600000

0,800000

1,000000

1,200000

1,400000

1,600000

2 4

Number of processes

Sp
ee

du
p

10000 elements
20000 elements
30000 elements
40000 elements
50000 elements

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 32 51

HyperQuick sort: Parallel algorithm…

The main difference between this algorithm and the previous
one consists in the method of choosing the pivot element
The block sorting is executed at the very beginning of
computations. The average element of some block is chosen
as the pivot element (for instance, on the first processor of the
computer system). The pivot element selected in such a way
appears in some cases to be closer to the real mean value of
the sorted set than any other arbitrarily chosen value
To keep ordering the values in the course of computations,
the processors carry out the operation of merging the parts of
blocks obtained after splitting

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 33 51

HyperQuick sort: Parallel algorithm…

Efficiency analysis…
– The general estimation of speedup and efficiency:

() ()

() ()()pnppnpnp
nnE

pnppnpn
nnS

p

p

2log)/(log
log

,
2log)/(log

log

22

2

22

2

⋅+⋅
=

⋅+
=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 34 51

HyperQuick sort: Parallel algorithm…

Efficiency analysis (detailed estimations):
- Time of parallel algorithm execution, that corresponds to the

processor calculations:

- The duration of data accumulation in case of the Hockney
model is determined by the following equation:

,]log))/()/((log)/(log)/[()(222 τppnpnpnpncalcTp ++=

)/)2/((log)/()(log)(2
2

2 βαβα pnwpwpcommTp +++=

The total execution time of the parallel algorithm:
)/)2/((log)/()(log]log))/()/((log)/(log)/[(2

2
2222 βαβατ pnwpwpppnpnpnpnTp ++++++=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 35 51

HyperQuick sort: Parallel algorithm…

Description of the parallel program sample…
– First stage: Data initialization and data distribution among

the processors:
• Obtaining the size of the sorted array,
• Determining the initial data for the sorted array,
• Distributing the initial data among the processors is

presented by the function DataDistribution.
Code

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 36 51

HyperQuick sort: Parallel algorithm…

Description of the parallel program sample…

– Second stage: the execution of the HyperQuick sorting
iteration is implemented in the function
ParallelHyperQuickSort

Code

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 37 51

HyperQuick sort: Parallel algorithm…

Results of computational experiments…
– Comparison of theoretical estimations and experimental

data 2T *
2T4T
*

4T2T *
2T4T
*

4T

Parallel algorithm
Data size

2 processors 4 processors

10,000 0.001281 0.001485 0.001735 0.002898

20,000 0.002265 0.002180 0.002322 0.003770

30,000 0.003289 0.003077 0.002928 0.004451

40,000 0.004338 0.003859 0.003547 0.004721

50,000 0.005407 0.005041 0.004176 0.005242

0,000000

0,001000

0,002000

0,003000

0,004000

0,005000

0,006000

10000 20000 30000 40000 50000

Number of elements

Ti
m

e Experiment

Model

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 38 51

HyperQuick sort: Parallel algorithm

Results of computational experiments:
– Speedup

0,000000
0,200000

0,400000
0,600000
0,800000

1,000000
1,200000
1,400000

1,600000
1,800000

2 4

Number of elements

Sp
ee

du
p

10000 elements
20000 elements
30000 elements
40000 elements
50000 elements

Parallel algorithm

2 processors 4 processors

Time Speedup Time Speedup

10,000 0.001422 0.001485 0.957576 0.002898 0.490683

20,000 0.002991 0.002180 1.372018 0.003770 0.793369

30,000 0.004612 0.003077 1.498863 0.004451 1.036172

40,000 0.006297 0.003859 1.631770 0.004721 1.333828

50,000 0.008014 0.005041 1.589764 0.005242 1.528806

Number of
elements Sequential algorithm

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 39 51

Sorting by Regular Sampling: Parallel Algorithm…

The first stage: the blocks are sorted on each processor
independently by means of the conventional quick sorting
algorithm; each processor further forms a set of the elements of its
blocks with the indices 0, m, 2m,…,(p-1)m, where m=n/p2,

The second stage: all the data sets created on the processors
are gathered on one of the system processors and united in the
course of sequential merge into a sorted set; the obtained set of
values of the elements with the indices

is the basis for forming the set of the pivot elements, which is
transmitted to all the processors; at the end of this stage, each
processor splits its block into p parts using the obtained set of the
pivot values,

to be continued

⎣ ⎦ ⎣ ⎦ ⎣ ⎦2/)1(...,,12/2,12/ ppppppp +−−+−+

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 40 51

Sorting by Regular Sampling: Parallel Algorithm…

The third stage: each processor broadcasts the parts of its
block to the other processors in accordance with the enumeration
order - part j, 0≤ j<p, of each block is transmitted to the processor
number j,

The fourth stage: each processor performs merging p obtained
parts into a sorted block.

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 41 51

Sorting by Regular Sampling: Parallel Algorithm…

9315 46 48 9139 6 72 14

8936 69 40 2161 97 12 54

5853 97 84 7232 27 33 20

396 14 15 9146 48 72 93

4012 21 36 8954 61 69 97

3320 27 32 8453 58 72 97

126 39 72 3340 69 20 72

336 12 20 7239 40 69 72

Stage 1

Stage 2

33 69

39 6 14 15 9146 48 72 93

9740 12 21 36 8954 61 69

33 20 27 32 8453 58 72 97

33126 14 15 3221 20 27

583639 46 48 6940 54 61 53

8972 91 93 9797 72 84

Stage 3

Stage 4

156 12 14 3220 21 27 33

4636 39 40 5848 53 54 61

8972 72 84 9791 93 97

69

1:

2:

3:

1:

2:

3:

1:

2:

3:

1:

2:

3:

Example:
(p=3)

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 42 51

Sorting by Regular Sampling: Parallel Algorithm…

Efficiency analysis (detailed estimations):
- The execution time of the first parallel algorithm stage:

Total time of parallel algorithm execution:

τβατβα
ττβατ
ppnpnwppwpp
pnpppwpppnpnTp

222

2
2

22

log)/()/)2/((log)/(log
)/(log)/)1(log()/(log)/(

++++++
+++−++=

- The execution time of the second parallel algorithm stage:

- The execution time of the third parallel algorithm stage:

- The execution time of the fourth parallel algorithm stage:

,)/(log)/(2
1 τpnpnTp =

,)]/([log][]log[]/)1(log[22
2

2
2 βαττβα wppppppwppTp ++++−+=

),/)2/((log)/(2
3 βατ pnwppnTp ++=

τppnTp 2
4 log)/(=

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 43 51

Sorting by Regular Sampling: Parallel Algorithm…
Results of computational experiments…
– Comparison of theoretical estimations the experimental

data 2T *
2T4T
*

4T

Parallel algorithmData
size 2 processors 4 processors

10,000 0.001533 0.001513 0.001762 0.001166

20,000 0.002569 0.002307 0.002375 0.002081

30,000 0.003645 0.003168 0.003007 0.003099

40,000 0.004747 0.004542 0.003652 0.003819

50,000 0.005867 0.005503 0.004307 0.004370

0,000000

0,001000

0,002000

0,003000

0,004000

0,005000

0,006000

0,007000

10000 20000 30000 40000 50000

Number of elements

Ti
m

e Experiment

Model

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 44 51

Sorting by Regular Sampling: Parallel Algorithm

Results of computational experiments:
– Speedup

Parallel algorithm

2 processors 4 processors

Time Speedup Time Speedup

10,000 0.001422 0.001513 0.939855 0.001166 1.219554

20,000 0.002991 0.002307 1.296489 0.002081 1.437290

30,000 0.004612 0.003168 1.455808 0.003099 1.488222

40,000 0.006297 0.004542 1.386394 0.003819 1.648861

50,000 0.008014 0.005503 1.456297 0.004370 1.833867

Number of
elements Sequential algorithm

0,000000
0,200000
0,400000
0,600000
0,800000
1,000000
1,200000
1,400000
1,600000
1,800000
2,000000

2 4

Number of elements

Sp
ee

du
p

10000 elements
20000 elements
30000 elements
40000 elements
50000 elements

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 45 51

Summary

The following methods of parallel data sorting are described:
– Bubble sort,
– Shell sort,
– Quick sort

The two additional variants are described for the quick sorting
algorithm:
– HyperQuick sort,
– Sorting by regular sampling

Software implementation of the HyperQuick sorting is presented
The order of adducing the parallel sorting methods can be
considered as an example of step-by-step modifications of parallel
methods aimed at improving the speedup and efficiency
characteristics

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 46 51

Discussions

What is the essence of the parallel generalization of the
basic sorting operation?
What complexity estimations of the sequential computations
should be used for determining the speedup and efficiency
characteristics?
Which of the above described algorithms possesses the
highest speedup and efficiency?
What schemes of choosing the pivot elements may be
suggested for the quick sorting algorithm?
What data communication operations are required in parallel
sorting algorithms?

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 47 51

Exercises

Develop the implementation of the parallel variant of the
bubble sorting algorithm.
Develop the implementation of the Shell sort.
Develop the parallel variant for the algorithm of sorting by
merging. Formulate the theoretical estimations of the
algorithm execution time.
Carry out computational experiments. Compare the
theoretical estimations to the experimental data.

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 48 51

References

Akl, S. G. (1985). Parallel Sorting Algorithms. –
Orlando, FL: Academic Press
Knuth, D.E. (1973). The Art of Computer
Programming: Sorting and Searching. – Reading,
MA: Addison-Wesley.
Kumar V., Grama, A., Gupta, A., Karypis, G.
(1994). Introduction to Parallel Computing. - The
Benjamin/Cummings Publishing Company, Inc. (2nd
edn., 2003)
Quinn, M. J. (2004). Parallel Programming in C with
MPI and OpenMP. – New York, NY: McGraw-Hill.

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 49 51

Next Section

Parallel Methods of Graph Calculations

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 50 51

Author’s Team

Gergel V.P., Professor, Doctor of Science in Engineering, Course Author
Grishagin V.A., Associate Professor, Candidate of Science in

Mathematics
Abrosimova O.N., Assistant Professor (chapter 10)
Kurylev A.L., Assistant Professor (learning labs 4,5)
Labutin D.Y., Assistant Professor (ParaLab system)
Sysoev A.V., Assistant Professor (chapter 1)
Gergel A.V., Post-Graduate Student (chapter 12, learning lab 6)
Labutina A.A., Post-Graduate Student (chapters 7,8,9, learning labs 1,2,3,

ParaLab system)
Senin A.V., Post-Graduate Student (chapter 11, learning labs on Microsoft

Compute Cluster)
Liverko S.V., Student (ParaLab system)

Nizhny Novgorod, 2005 Introduction to Parallel Programming: Parallel Methods for Sorting
© Gergel V.P. 51 51

About the project

The purpose of the project is to develop the set of educational materials for the
teaching course “Multiprocessor computational systems and parallel programming”.
This course is designed for the consideration of the parallel computation problems,
which are stipulated in the recommendations of IEEE-CS and ACM Computing
Curricula 2001. The educational materials can be used for teaching/training
specialists in the fields of informatics, computer engineering and information
technologies. The curriculum consists of the training course “Introduction to the
methods of parallel programming” and the computer laboratory training “The
methods and technologies of parallel program development”. Such educational
materials makes possible to seamlessly combine both the fundamental education in
computer science and the practical training in the methods of developing the
software for solving complicated time-consuming computational problems using the
high performance computational systems.

The project was carried out in Nizhny Novgorod State University, the Software
Department of the Computing Mathematics and Cybernetics Faculty
(http://www.software.unn.ac.ru). The project was implemented with the support of
Microsoft Corporation.

http://www.software.unn.ac.ru/

	Section 10. Parallel Methods for Sorting
	Contents
	Problem Statement
	Parallelizing Techniques…
	Parallelizing Techniques…
	Parallelizing Techniques…
	Parallelizing Techniques
	Bubble Sort: Sequential Algorithm
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: Algorithm of odd-even permutation…
	Bubble sorting: algorithm of odd-even permutation
	Shell sort: Sequential algorithm…
	Shell sort: Sequential algorithm
	Shell sort: Parallel algorithm…
	Shell sort: Parallel algorithm…
	Shell sort: Parallel algorithm…
	Shell sort: Parallel algorithm…
	Shell sort: Parallel algorithm…
	Shell sort: Parallel algorithm
	Quick sort: Sequential algorithm…
	Quick sort: Sequential algorithm
	Quick sort: Parallel algorithm…
	Quick sort: Parallel algorithm…
	Quick sort: Parallel algorithm…
	Quick sort: Parallel algorithm…
	Quick sort: Parallel algorithm…
	Quick sort: Parallel algorithm
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm…
	HyperQuick sort: Parallel algorithm
	Sorting by Regular Sampling: Parallel Algorithm…
	Sorting by Regular Sampling: Parallel Algorithm…
	Sorting by Regular Sampling: Parallel Algorithm…
	Sorting by Regular Sampling: Parallel Algorithm…
	Sorting by Regular Sampling: Parallel Algorithm…
	Sorting by Regular Sampling: Parallel Algorithm
	Summary
	Discussions
	Exercises
	References
	Next Section

